
Технологические карты разработки библиотеки алгоритмов прогноза временных рядов 113

Технологические карты разработки библиотеки
алгоритмов прогноза временных рядов

А.Н. Фирстенко, Д.С. Кононенко, М.П. Кузнецов, А.А. Морозов,

Д.С. Сунгуров, Н.А. Савинов, А.И. Корниенко, Р. Б. Джамтырова,

Н.П. Ивкин, Е.Ю. Зайцев, Н.К. Животовский, Д.С. Кононенко,

Р. Б. Быстрый

alexnickfirst@gmail.com

В нижеприведенном документы приведены технологическое рекомендации по созданию
программных систем интеллектуального анализа данных. Рекомендации были собраны при
разработке библиотеки алгоритмов прогнозирования временных рядов. В частности, во-
шли рекомендации по созданию метаописаний временных рядов, визуализации прогноза,
стилевой правке кода, созданию базы временных рядов, unit-тестированию, системному
тестированию и профилироваанию.

Метаописание временных рядов

Исследуется возможность метаописания временных рядов с целью последующей их
классификации. Под метаописанием ряда понимается некоторый набор признаков, харак-
теризующих временной ряд. В качестве метки класса для некоторого временного ряда
выступает название того алгоритма из наперед заданного множества алгоритмов прогно-
зирования, который прогнозирует этот ряд наилучшим образом. Для прогнозирования
временных рядов существует большое количество алгоритмов [4, 3]. Результат работы
каждого алгоритма зависит от свойств прогнозируемого ряда, поэтому возникает задача
автоматического выбора наилучшего алгоритма из некоторого заданного семейства.

Данную задачу можно рассматривать как задачу классификации. Объектами класси-
фикации являются временные ряды. Для метаописания временного ряда создается набор
признаков. В качестве признаков были использованы длина ряда, число вспомогательных
рядов, максимальное и минимальное значения ряда, число пропущенных данных, среднее
значение временного ряда. Метками классов являются названия алгоритмов прогнозиро-
вания. Временной ряд относится к некоторому классу, если соответствующий этому классу
алгоритм работает на временном ряде наилучшим образом по заданному функционалу ка-
чества. Для классификации был использован алгоритм k взвешенных ближайших соседей
[2].

Постановка задачи метоописания временных рядов. Задано множество мно-
гомерных временных рядов S = {si}ni=1. Задано множество алгоритмов прогнозирования
A = {ak}lk=1. Задан функционал качества работы алгоритма L(s, a). Требуется построить
алгоритм классификации, который выбирает для нового временного ряда s алгоритм aopt,
такой что:

aopt = argmin
a∈A

L(s, a).

Алгоритм решения поставленной задачи.

1. Для каждого ряда si ∈ S составить его признаковое описание xi = (xi1, ..., xim).
2. Для каждого ряда si ∈ S определить метку yi = k, где ak = argmin

a∈A
L(si, a).

3. Настроить классификатор по X, y.
4. Классифицировать s по его признаковому описанию.

Машинное обучение и анализ данных, 2011. Т. 1, №1.



114 А. Н. Фирстенко, Д. С. Кононенко, М. П. Кузнецов и др.

Вычислительный эксперимент. Был проведен вычислительный эксперимент на
выборке из 120 рядов, по результатам прогнозирования их тремя алгоритмами — SSA,
ARIMA, локальными методами прогнозирования. Исходные данные доступны здесь[1].
По результатам прогнозирования каждый ряд был отнесен к классу, соответствующе-
му алгоритму, который на данном ряде работает наилучшим образом. Было проведена
1000 экспериментов, в ходе каждого из которых выборка случайным образом делилась на
тестовую и обучающую с сохранением пропорций по классам. Результаты эксперимента
приведены в таблице.

Таблица 1. Результаты сравнения алгоритмов

SSA ARIMA LOCAL
Ряды в исходной выборке, шт. 14 49 57

Ряды в обучающей выборке, шт. 4 16 19
Ряды в тестовой выборке, шт. 10 33 38

В среднем неправильно классифицировано, шт. 9.7 20.7 24.1

Исходя из результатов вычислительного эксперимента, можно утверждать, что для
более успешного автоматического выбора алгоритмов прогнозирования требуется более
тщательный выбор признаков для метаописания рядов, а также, возможно, следует ис-
пользовать другие алгоритмы классификации.

Визуализация прогноза временных рядов

Целью данной технологической карты является описание работы функции визуализа-
ции PlotTS.

May Jun Jul Aug Sep
0

50

100

150

P
ric

e 
O

il

SSE =7.77

 

 

history
forecast

May Jun Jul Aug Sep
0

50

100

 

 

Index Dow Jones
Price Gase

Рис. 1. Пример работы PlotTS

Реализованы следующие опции:



Технологические карты разработки библиотеки алгоритмов прогноза временных рядов 115

1. Построение графика истории временного ряда.
2. Построение графика прогноза.
3. Форматирование диапазонов по осям.
4. Вывод легенды.
5. Отображение заданного в параметрах значения функции оценки качества прогноза.
6. Вывод на дополнительном графике вспомогательных временных рядов, использован-

ных при прогнозе.
7. Сохранения графика в файл.

Для детального описания входных и выходных параметров функции и примеров
работы см. файл PlotTS.m. Формат входных параметров стандартный, все парамет-
ры построения графика передаются в структуре plotOptions. В одной папке с файлом
PlotTS.m должны лежать файлы defaultPlotOptions.mat and uniteStructures.m. В файле
defaultPlotOptions.mat можно посмотреть пример задания параметров построения графи-
ка, также оттуда подгружаются параметры, не указанные пользователем. Пример выво-
димого графика — рис. (1).

Стилевая правка кода

Целью данной технологической карты является указание последовательности действий
при проверке кода корректором и основные ошибки руководителей проектов. Порядок
работы.

1. Открыть код, посмотреть основную функцию программы. В ней должно быть немного
строк, вызовы некоторых процедур, связанных с подбором параметров. После просмот-
ра функции должно стать понятно понятно, как работает алгоритм, и на какие блоки
разбит. Если это непонятно, то, скорее всего, программа спроектирована криво.

2. Смотреть каждую функцию, следуя логике работы программы.
3. Посмотреть на входные/выходные параметры. Если выходных параметров много, это

подозрение на то, что функция, скорее всего, должна быть разбита на несколько ма-
леньких. Каждая из подфункций должна выполнять свою работу.

4. Прочитать документацию и example. Из них, опять же, должно быть понятно, как
будет работать функция. Если пункты 1-4 выполнены добросовестно, то это сильно
облегчит дальнейшую проверку кода.

5. Приступить к проверке конкретной функции. Основная задача корректора — сделать
так, чтобы код стал понятным. Соответственно, если код понятен корректору сразу,
скорее всего, грубых замечаний в нем не будет, и наоборот. Ниже приведены стандарт-
ные замечания, на которые следует обращать внимание при написании и проверке
кода.

Стандартные замечания

1. Названия переменных: надо придумывать переменной название, содержащее в себе ее
смысл, не боясь перегромоздить код словами. Даже если эта переменная — просто
индекс небольшого цикла.

2. В случае, когда переменная — индекс, следует приписывать ей префикс «i» или «j»,
например, iFunction. Если переменная обозначает количество (размер) ч.-либо, следует
приписывать ей префикс «n». Например, for iFunction = 1:nFunctions

3. Все операторы типа «=», «==», «<»,... следует выделять пробелами.
4. Не должно быть булевских переменных с названиями типа «flag». Название любо-

го флага должно передавать его смысл. Лучше ставить префикс «is», например,
«isFound».



116 А. Н. Фирстенко, Д. С. Кононенко, М. П. Кузнецов и др.

5. В описание всех функций надо вставлять example.
6. Большую функцию всегда лучше разделить на несколько маленьких, каждая из кото-

рых выполняет конкретное действие. Если так не делать, то следует вставлять в тело
функции комментарии, раскрывающие смысл каждого отдельного куска.

7. Цифр в коде должно быть по минимуму, они должны выноситься в начало функции
константами. Константы следует писать с большой буквы, через подчеркивание, на-
пример, NUMBER_OF_ELEMENTS.

8. Названия структур должны начинаться с заглавной буквы.
9. При перечислении аргументов функции, следует ставить пробелы после запятых: result

= Function(arg1, arg2, ..., argN);

Создание базы данных многомерных временных рядов для за-
дач прогнозирования

Временные ряды бывают 2 основных типов: природные и финансово-экономические.
Требуется найти ряды обоих типов, желательно организовать автоматическое скачи-
вание.

Наибольший объем информации можно получить от следующих информационно-
финансовых систем (они являются главными мировыми поставщиками этих данных):

1. Yahoo finance
2. Google finance
3. Bloomberg
4. Datastream Thomson Reuters
5. World Bank

Начинать поиск таких систем нужно хотя бы с одного крупного источника финансо-
вой информации. Вводим google finance в Wikipedia, получаем ссылки на yahooFinance,
Bloomberg, Reuter (в разделе См. Также Wiki-статьи). Это почти полный список всех
крупных информационных источников в Интернете.

При этом бесплатные данные предоставляют только 1, 2, 5. Для скачивания данных в
этих системах выбираем индекс/акцию, historical prices, download to spreadsheet. Данные
сохраняются в формате .csv.

Можно организовать автоматическом скачивание, задавая соответствующий за-
прос в адресной строке. Также для автоматического скачивания можно использовать
Matlab, в состав которого включен Datafeed Toolbox. В http://www.mathworks.com/help/
toolbox/datafeed/f9320.html разобран пример с подключением к базе Bloomberg (есть воз-
можность работать с бесплатными данными через Yahoo finance).

Имеется аналог UCI для временных рядов: UCR Classification/Clustering Page by
Eamonn Keogh (22 ряда). Однако для скачивания оттуда требуется регистрация с ука-
занием личных данных . Другие источники информации можно найти с помощью Google.
При этом могут быть полезны следующие запросы:

1. time series db (time series database)
2. time series repository
3. time series download
4. time series data library
5. (time series) + subject area (meteorology, weather, precipitation, quakes, tide, wind,

temperature, solar radiation) - природные временные ряды



Технологические карты разработки библиотеки алгоритмов прогноза временных рядов 117

Однако данные, полученные из большого числа разнородных источников, могут разли-
чаться по формату и способу доступа к ним, поэтому организовать автоматическое ска-
чивание таких рядов затруднительно.

При создании системы прогнозирования важно использовать определенный формат
данных, с которым будут работать все участники проекта. Поэтому необходимо создать
процедуру, приводящую ряды из формата скачивания в установленный формат (в данном
случае, формат ts).

Типичные синтетические (слабозашумленные) временные ряды

— Константа
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/constants.mat

— Синус
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/sines.mat

— 2 синуса
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/2sines.mat

— Пила
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/saws.mat

— Трапеция
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/trapezia.mat

Высокопериодичные временные ряды

— Потребление электроэнергии
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsEnergyConsumption.csv

— Работа машин и механизмов
— Звук
— Музыка

https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsLedZeppelin.csv

Периодичные зашумленные временные ряды

— Цены на электроэнергию
— Цены на потребительские товары
— Объем сбыта товаров

https://dmba.svn.sourceforge.net/svnroot/dmba/Data/RetialSalesItems.csv
— Цены на сахар

https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsSugarPrice.csv

— Цены на хлеб
https://dmba.svn.sourceforge.net/svnroot/dmba/Data/WhiteBreadPrices.csv

— Объем потребления напитков
— Погода: температура, влажность, сила ветра

https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsGermanWeather.csv



118 А. Н. Фирстенко, Д. С. Кононенко, М. П. Кузнецов и др.

— Объем пассажирских (и грузо-) перевозок

Со сложным периодом

— Электрокардиограмма
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsEcg.csv

— Пульсовая волна
— Энцефалограмма
— Отраженные волны

Апериодичные временные ряды

— Распространение гриппа
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsFluUSA.csv

— Миграция населения
— Миграция птиц

Сильно зашумленные временные ряды

— Цены (объемы) на основные биржевые инструменты
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsCSCO.csv

— Биржевые индикаторы
https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsDJIA.csv

— Цены на опционы (по сетке)

Событийные

— Землетрясения https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsEarthquakesArkansas.csv

— Финансовые пузыри https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms
/TSForecasting/TimeSeries/Sources/tsFinancialBubbles.csv

— Рекорды

Unit-тестирование

Порядок работы. Необходимо добавить папку xunit к списку просматриваемых
MatLab’ом. Для этого необходимо воспользоваться командой addpath(’путь к папке’). Соб-
ственно сам процесс, требуемый от нас:

1. Создать отдельную папку для всех unit-тестов для данного проекта.
2. Каждый создаваемый тест должен называться в стиле testfunction или TestFunction

(само собой, на место function ставим истинное имя тестируемой функции).
3. Идейная суть задания — подавать на вход функции различные контрольные значения

и поверять правильность результата.
4. Для этих целей достаточно использовать всего одну функцию: assertEqual(A, B,

message): если A != B — выкрикивает message. В качестве message предлагается взять
такую форму — ’FunctionName::ResultError:: FunctionName(A)!=B’. Иногда функции
assertEqual будет недостаточно, но для такой ситуации существует документация к
пакету MatLab x-unit.

5. Для запуска всех тестов сразу напишем коротенькую функцию:



Технологические карты разработки библиотеки алгоритмов прогноза временных рядов 119

function StartUnitTests
suite = TestSuite.fromName(’Название папки со всеми тестами’);
suite.run
end

6. Запускаем и проверяем.

Типичные ошибки. Основной ошибкой было то, что все руководители перегружали
смыслом почти каждую функцию, в то время как unit-тестирование создано для провер-
ки работоспособности простейших, идейно почти не нагруженных технических функций.
Второй основной ошибкой было то, что почти все подавали свой код на unit-тестирование,
когда работа над кодом была уже завершена, в то время как unit-тестирование предпола-
гается использовать именно во время разработки, а не после.

Системное тестирование

Порядок работы .

1. Открыть скрипт algtest-new.m.
2. В соответствующие поля внести названия алгоритмов, временных рядов, метрик каче-

ства.
3. Добавить файлы из п.2 в path Matlab
4. Задать FRC-PROPORTION — долю объектов выборок, участвующую в обучении.
5. Запустить скрипт. Все найденные числовые значения будут находиться в трехмерной

матрице final-qual.

Стандартные замечания

1. Функция не проходит простые тесты.
2. Нет соответствия стандартным интерфейсам.
3. На вход функция требует дополнительные параметры, не имеющие значений по умол-

чанию.
4. Программа работает настолько долго, что тестирование на большом числе тестовых

рядов проблематично.

Результаты тестирования. Семь алгоритмов были протестированы на 121 реаль-
ном финансовом ряде. Рассматривалось краткосрочное прогнозирование: длина прогноза
примерно 1% длины обучения. Длина обучения в среднем 400 отсчетов. Алгоритмы срав-
нивались по средней ошибке MSE. На каждом из рядов лучший из алгоритмов получал 6
баллов, следующий — 5, . . . , худший — 0 баллов. В таблице (2) приведена сумма баллов,
а также среднее время работы алгоритма на ряде.



120 А. Н. Фирстенко, Д. С. Кононенко, М. П. Кузнецов и др.

Таблица 2. Сравнение работы алгоритмов на краткосрочном прогнозировании
Автор Название алгоритма Сумма

баллов
Среднее время
работы на ряде

Илья Фадеев SSA 198 менее секунды
Дмитрий Сунгуров Model Selection 92 менее секунды
Алексей Корниенко Local Forecasting 463 менее секунды
Никита Ивкин ARIMA 462 менее секунды
Александр Мафусалов Subseries Superposition Producing 295 35 секунд
Михаил Кузнецов Kernel Smoothing 503 120 секунд
Никита Животовский Exponential Smoothing 528 менее секунды

Видно, что по сумме баллов вперед вырываются четыре алгоритма с примерно одина-
ковыми результатами: Local Forecasting, ARIMA, Kernel Smoothing, Exponential Smoothing.
Три из этих алгоритмов также работают быстро. Также четыре алгоритма были протести-
рованы на долгосрочном прогнозировании. На тех же финансовых рядах длина прогноза
составляла примерно 10% обучения. Баллы — от 3 до 0. Результаты — таблица (3).

Таблица 3. Сравнение работы алгоритмов на долгосрочном прогнозировании
Автор Название алгоритма Сумма баллов Среднее время

работы на ряде
Илья Фадеев SSA 85 менее секунды
Алексей Корниенко Local Forecasting 221 менее секунды
Никита Ивкин ARIMA 205 менее секунды
Никита Животовский Exponential Smoothing 215 менее секунды

На долгосрочном прогнозировании алгоритмы Local Forecasting, ARIMA и Exponential
Smoothing работают значительно лучше, чем SSA.

Профайлер MATLAB

Инструкция по использованию профайлера в Matlab: http://www.mathworks.com/

help/techdoc/ref/profile.html. Перечислим основные моменты, над которыми стоит
задуматься при использовании профайлера.

1. Необходимо запускать профайлер на примерах время работы которых составляет хотя
бы пару минут.

2. Полезно оценить зависимость времени исполнения функции от длины входных данных,
а также оценить распределение времени выполнения между модулями.

3. Необходимо следить, что бы основные функции тестировались на ненулевых данных
(так как операции с 0 происходят несравненно быстрее).

Поиск способа ускорения кода. Профайлер укажет «проблемные» места, но не под-
скажет как их ускорить. Поиск путей ускорения следует основывать на двух идеях. Во-
первых, Matlab — интерпретируемый язык, а значит лишен стандартной оптимизации,
которая выполняется на этапе компиляции. Во-вторых, нужно обратить внимание на
стандартные ошибки программиста Matlab. Стандартный набор оптимизационных ша-
гов компилятора можно прочитать в документации к gcc или icc: http://gcc.gnu.org/
onlinedocs/.

Основные ошибки программиста (основываясь на опыте просмотренных работ):



— необходимо контролировать операции стоящие в циклах и выносить за цикл всё что
можно вычислить вне него.

— следует избегать динамических изменений размеров структур. Рекомендуется сначала
создать структуру нужного размера, заполненную нулями, а потом её заполнять, а не
динамически добавлять элементы.

— не использовать сложные cell() структуры без необходимости.

Далее приведена последовательность действия технолога.

1. Запускаем unit-тест.
2. Запускаем профайлер, находим «проблемные» модули.
3. Исправляем код.
4. Запускаем профайлер, оцениваем результаты своей деятельности.
5. Запускаем unit-тест, контроль корректности работы программы.

Литература

[1] https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/TSForecasting/TSMetaDescription/.

[2] K. B. Воронцов Машинное обучение (курс лекций), 2009.

[3] J. McNames Innovations in local modeling for time series prediction, Stanford University, 1999.

[4] Kalaba, R. and Tesfatsion, L. Time-varying linear regression via flexible least squares, 1989.


