
260 В. М. Старожилец, Ю. В. Чехович

Комплексирование данных из разнородных
источников в задачах моделирования транспортных

потоков∗

В. М. Старожилец1,2, Ю. В. Чехович1,2

starvsevol@gmail.com; chehovich@forecsys.ru
1ФИЦ «Информатика и управление» РАН, Россия, г. Москва, ул. Вавилова, д. 44/2

2Московский физико-технический институт, Россия, г. Долгопрудный, Институтский пер., д. 9

Исследуется задача агрегации данных с GPS-треков и дорожных датчиков для по-
строения и решения разностной схемы, соотвествующей выбранной математической мо-
дели транспортного потока. Отдельно рассматриваются ситуации транспортного потока
на самой автомагистрали и потока на въездах и съездах. Для решения обеих задач пред-
ложены алгоритмы, а также проведены эксперименты на реальных данных с использо-
ванием этих алгоритмов. Для проведения вычислительных экспериментов использованы
анонимные трековые данные от сервиса Яндекс.Пробки и данные с дорожных датчиков
Центра организации дорожного движения. В качестве автомагистрали рассматривалась
Московская кольцевая автомобильная дорога.
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1 Введение
Работа посвящена проблеме агрегации данных из разных источников, используемых

в задаче моделирования транспортных потоков [1]. Для моделирования транспортных по-
токов используются данные о скорости и числе проехавших по рассматриваемому участку
автодороги автотранспортных средств (АТС). Эти данные могут быть получены с по-
мощью GPS-треков (данные трекового типа) и дорожных датчиков, которые имеют раз-
личные свойства. Дорожные датчики измеряют скорость и число АТС с приемлемой точ-
ностью, погрешность измерений не превышает 10% в зависимости от типа датчика [2],
но не всегда покрывают транспортную сеть на требуемом уровне. В то же время дан-
ные с GPS-треков (трекового типа) имеют недостаточную точность, так как фиксируют
небольшой процент1 от общего числа проехавших АТС, однако полностью покрывают
транспортную сеть. Поэтому основная идея работы заключается в том, чтобы агрегиро-
вать данные с дорожных датчиков и GPS-треков для получения более точных данных
с большим покрытием транспортной сети.

Моделирование транспортных потоков основано на их сходстве с жидкой или газовой
средой. В частности, базовая модель Лайтхилла–Уизема–Ричардса (LWR) [3–5] основана
на предположении о существовании взаимно-однозначной зависимости между скоростью
и плотностью потока АТС и сохранении числа АТС в транспортной сети. В современ-
ном макроскопическом подходе транспортный поток описывается нелинейной системой

∗Работа выполнена при частичной финансовой поддержке РФФИ проект №14-07-00685

1Рассчитать долю трековых АТС в общем потоке можно, взяв отношение числа трековых АТС, к числу

АТС зафиксированному датчиком для детектора и сегмента под ним. Рассчитанные по данной методике

на имеющихся у авторов данных значения имеют большой разброс.
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гиперболических дифференциальных уравнений в частных производных второго порядка
в различных постановках [6–13]. Такая система требует точных входных данных с хоро-
шим покрытием транспортной сети для выбранной модели. Эти требования к данным
необходимы для построения и разрешения разностной схемы, соотвествующей выбранной
модели, и заданию граничных условий. Ранее было показано [14], что абсолютно точных
данных без пропусков для задач транспортного типа не существует.

Ранее задача агрегирования произвольных данных рассматривалась в работах [15–18].
Предложенные там методы не учитывают специфику задачи агрегации данных для мо-
делирования транспортных потоков. Для решения проблемы получения точных данных
с хорошим покрытием транспортной сети в работе предлагается метод агрегирования
данных GPS-треков и дорожных датчиков. Однако GPS-треки на автомагистрали и на
въездах и съездах с нее сильно отличаются из-за существенно меньшего потока АТС на
въездах и съездах по сравнению с автомагистралью, поэтому данные с въездов и съездов
рассматриваются отдельно от данных с автомагистрали. В частности, для данных с авто-
магистрали предложен метод агрегации данных GPS-треков и дорожных датчиков, осно-
ванный на построении линейной модели для скорости и числа АТС. Критерием качества
полученной модели является среднеквадратичная ошибка между оцененным числом про-
ехавших АТС и реальным, а также коэффициент корреляции между ними. Число реально
проехавших АТС определяется по данным дорожных датчиков. Для данных на въездах
и съездах был разработан метод восстановления суммарного потока на основе сохране-
ния числа АТС в транспортной сети с использованием оценки числа проехавших АТС,
полученной с помощью модели на данных с автомагистрали. В работе был проведен вы-
числительный эксперимент на данных дорожных датчиков и GPS-треков для Московской
кольцевой автомобильной дороги за 2012 г.

2 Постановка задачи
Поскольку в работе рассматривается задача агрегации даных для двух принципиально

различных дорожных конфигураций: автомагистрали и въезд–съезд, то необходимо по-
ставить задачу для каждой из этих конфигураций. Поставленные задачи будут отличаться
подходом к агрегации данных и способом проверки полученного решения.

2.1 Задача агрегации для данных с автомагистрали
Пусть Ntrack ∈ N и Vtrack ∈ R+ — число АТС и их средняя скорость, полученные

из данных GPS-треков для определенного участка дороги. Обозначим через Ndet ∈ N
и Vdet ∈ R+ число АТС и их среднюю скорость, полученные с помощью дорожных датчиков
для того же участка дороги.

Необходимо найти функцию f : N×R+×Rm → R+ от Ntrack×Vtrack и вектора параметров
a ∈ Rm, где m — сложность модели, которая аппроксимирует число АТС, проехавших по
сегменту автомагистрали

Nest = f(a|Ntrack,i, Vtrack,i)

и является решением следующей задачи:

σ(a|Ntrack, Vtrack, Ndet) =

√√√√ 1
n

n∑

i=1

(f(a|Ntrack,i, Vtrack,i) − Ndet,i)2 → min
a

, (1)

где Ntrack = [Ntrack,i] ∈ Nn, Vtrack = [Vtrack,i] ∈ Rn
+ и Ndet = [Ndet,i] ∈ Nn — вектора зна-

чений Ntrack, Vtrack и Ndet в момент времени i, а n — число двухминутных интервалов
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в выбранном временно́м промежутке. Предполагается, что f зависит только от трековых
переменных Ntrack и Vtrack, что позволяет ее использовать на участках автомагистрали,
которые не покрываются дорожными датчиками.

Однако скорость Vtrack вычисляется по малой доле АТС, поэтому она может сильно
отличаться от реальной скорости потока АТС. Для уменьшения влияния этого отличия
предлагается вместо оригинальных значений Vtrack использовать модифицированные зна-
чения Vest, определяемые выражением:

Vest = b1 + b2Vtrack,

где коэффициенты b1 и b2 являются решением следующей задачи:
√√√√ 1

n

n∑

i=1

(b1 + b2Vtrack,i − Vdet,i)2 → min
b1,b2

, (2)

а Vtrack,i ∈ R+ и Vdet,i ∈ R+ — значения Vtrack и Vdet в момент времени i. Таким образом,
задача (1) преобразуется в

σ(a|Ntrack, Vest, Ndet) → min
a

. (3)

Задача (3) решается на сегментах, для которых известны как данные с GPS-треков,
так и данные с дорожных датчиков. Это множество сегментов разбивается на обучающую
и контрольные выборки. Способ разбиения изложен в подразд. 5.2.

Внешним критерием качества полученного решения является коэффициент корреля-
ции corr(Nest, Ndet), где Nest = [Nest,i] ∈ Rn

+ и Ndet = [Ndet,i] ∈ Nn — вектора значений Nest
и Ndet в момент времени i.

2.2 Задача агрегации для данных со въездов–съездов
Въезды и съезды образуют перекрестки с автомагистралью. Перекресток — это место

пересечения, примыкания или разветвления дорог на одном уровне, ограниченное вооб-
ражаемыми линиями, соединяющими соответственно противоположные, наиболее удален-
ные от центра перекрестка начала закруглений проезжих частей.

Для оценки суммарного количества АТС, въехавших и съехавших с автомагистрали,
используется уравнение баланса, заключающееся в том, что на въездах и съездах число
въезжающих АТС должно равняться числу выезжающих:

Nain + Nin = Naout + Nout,

где Nain ∈ R+ и Naout ∈ R+ — оценка числа въехавших на перекресток по автомагистра-
ли и выехавших по автомагистрали после перекрестка АТС, полученная после решения
задачи (3); Nin — суммарное число въехавших по въездам АТС; Nout — суммарное число
съехавших по съездам АТС.

Рассмотрим, как вычислить значение Nin; значение Nout вычисляется аналогично. По
определению Nin =

∑
k∈Kin

Ndet,k, где Kin = {1, . . . , K} — множество индексов съездов,
а Ndet,k — значение Ndet на k-м въезде. Но не для всех k ∈ Kin значение Ndet,k извест-
но. Поэтому рассмотрим разбиение множества Kin на два непересекающихся подмноже-
ства Kindet и Kintrack: Kin = Kindet ∪ Kintrack и Kintrack ∩ Kindet = ∅. Множество Kindet состоит
из индексов въездов, для которых известно Ndet, а множество Kintrack состоит из индексов
въездов, для которых неизвестно Ndet.
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Чтобы получить оценку Ndet для въездов из Kintrack, предлагается использовать подход
описанный в подразд. 2.1:

σ(a|Ntrack, Vest, Ndet) → min
a

,

где Ntrack = [Ntrack,i] ∈ Nn, Vtrack = [Vtrack,i] ∈ Rn
+ и Ndet = [Ndet,i] ∈ Nn — вектора значений

Ntrack, Vtrack и Ndet для въезда из множества Kindet в момент времени i ∈ Iin, n = |Iin|.
Множество Iin — это множество индексов временны́х интервалов, таких что в момент
времени i ∈ Iin известно число въехавших АТС Nin,k для всех въездов k ∈ Kin. Для
получение необходимых данных на съездах нужно решить аналогичную задачу. Введем
суммарное число въехавших по въездам АТС

Nin =
∑

k∈Kindet

Ndet,k +
∑

k′∈Kintrack

Nest,k′,

где Ndet,k — значение Ndet на k-м въезде; Nest,k′ — значение Nest на k′-м въезде. Аналогично
определяется суммарное число съехавших по съездам АТС Nout.

Требуется построить алгоритм нахождения таких значений Nestin и Nestout, чтобы они
удовлетворяли уравнению баланса и различие между ними и значениями Nin и Nout в мо-
менты времени из множества Iin и Iout соответсвенно было не слишком велико, что фор-
мализуется следующим образом:

(Nain + Nestin − Naout − Nestout)2 → min
Nestin,Nestout

;

s.t.
1
n

(
∑

i∈Iin

|N i
estin − N i

in| +
∑

i′∈Iout

|N i′

estout − N i′

out|

)

< δ ,





(4)

где δ — допустимое отличие оценки числа АТС на съездах и въездах N i′

estout и N i
estin от

наблюдения N i′

out и N i
in; Iout — множество аналогичное Iin для съездов; N i

in и N i
estin —

значения Nin и Nestin в момент времени i; N i′

out и N i′

estout — значения Nout и Nestout в момент
времени i′; n = |Iin| + |Iout|.

3 Выбор модели для предсказания числа автотранспортных
средств
Для решения задачи (3) необходимо задать вид функции f . Было показано, что f

линейно зависит от числа трековых АТС Ntrack, скорости Vtrack и оценки плотности пото-
ка [19]. Для проверки наличия дополнительных зависимостей была построена скрипичная
диаграмма [20], изображенная на рис. 1. Рисунок 1 показывает, что линейной аппрокси-
мации недостаточно для приближения реального числа АТС. Чтобы учесть найденную
нелинейность, предлагется добавить слагаемое log(Ntrack), так как средние значения на
рис. 1 лежат на кривой, похожей на график логарифма. Таким образом, будем искать
функцию f в виде:

f(a|Ntrack,i, Vest,i) = a0 + a1Ntrack,i + a2 log (Ntrack,i) + a3Vest,i + a4
Ntrack,i

Vest,i
. (5)

Также кроме модели вида (5) были рассмотрены и другие модели, такие как модель
числа трековых АТС:

f(a|Ntrack,i) = a0 + a1Ntrack,i , (6)
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Рис. 1 Скрипичная диаграмма зависимости полного числа АТС от числа трековых АТС

модель числа АТС и скорости

f(a|Ntrack,i, Vest,i) = a0 + a1Ntrack,i + a2Vest,i (7)

и модель с логарифмом числа АТС и скоростью

f(a|Ntrack,i, Vest,i) = a0 + a1 log (Ntrack,i) + a2Vest,i . (8)

4 Алгоритм восстановления суммарного потока на въездах
и съездах
Алгоритм восстановления суммарного потока на въездах и съездах состоит из следу-

ющих шагов:
– задать перекресток, на котором будет решаться задача восстановления суммарного

потока, и определить сегменты, соответствующие въездам и съездам, а также сегменты
с которых берутся данные о Nain и Naout;

– определить въезды и съезды, принадлежащие множествам Kintrack и Kouttrack. Уже име-
ющееся на них небольшое число данных используем для определения параметров слу-
чайного Пуассоновского процесса, соответствующего данному въезду или съезду;

– используя полученные распределения на въездах и съездах из множеств Kintrack
и Kouttrack вместо реальных данных, а также данные с самого МКАД (которые счита-
ем верно восстановленными в подразд. 5.2) и данные с въездов и съездов из множеств
Kindet и Koutdet, решаем задачу (4).
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Алгоритм 1 Алгоритм восстановления суммарных значений потока на въездах/съездах,
использующий уравнение баланса

если N 6= 0 то
если N > 0 то

max _extra_cars = Nout + (max _cars_in − Nin)
если N < max _extra_cars то

Nestout = Nout − N · Nout/ max _extra_cars
Nestin = Nin + N · (max _cars_in − Nin)/ max _extra_cars

иначе
Nestout = 0
Nestin = max _cars_in

иначе
max _extra_cars = Nin + (max _cars_out − Nout)
если |N | < max _extra_cars то

Nestin = Nin − N · Nin/ max _extra_cars
Nestout = Nout + N · (max _cars_out − Nout)/ max _extra_cars

иначе
Nestin = 0
Nestout = max _cars_out

Для решения поставленной задачи предлагается использовать алгоритм 1, использу-
ющий понятие дисбаланса N = Nain + Nin − Naout − Nout. Также введем следующие обозна-
чения max _cars_in = k max _cars_per_enter/exit — максимальное число въезжающих
по въездам АТС; max _cars_out = k′ max _cars_per_enter/exit — максимальное число
съезжающих по съездам АТС, где max _cars_per_enter/exit — максимальное число АТС,
которые могут проехать по съезду/въезду за 2 мин; k — число въездов; k′ — число съездов.
Значение max _cars_per_enter/exit равно 60 АТС [21], т. е. 1 АТС за каждые 2 с.

5 Вычислительный эксперимент
В работе проведен вычислительный эксперимент на реальных данных с МКАДа за

2012 г. и проверен предложенный подход к агрегации данных с автомагистралей.

5.1 Описание данных
В данной работе используются анонимные данные с GPS-треков и дорожных датчиков

за 2012 год Данные с GPS-треков представляют собой набор сегментов, каждый из кото-
рых соотносится с некоторым участком автодороги. Объединение сегментов покрывает
весь рассматриваемый участок транспортной сети. Для каждого сегмента известно число
проехавших за двухминутный интервал трековых АТС Ntrack и среднее время их проезда
по нему, из которого впоследствии рассчитывается скорость Vtrack. Также если за 2 мин
по данному сегменту проехало менее трех трековых АТС, то они не учитываются.

Для каждого датчика известно его местоположение на автомагистрали. Данные с дат-
чиков состоят из числа проехавших за 2 мин АТС Ndet для каждой из полос и их ско-
рости Vdet. Заметим, что в данных с датчиков также могут быть ошибки, например на
рис. 2 показаны данные датчика, в которых отсутствуют записи за 4 ч.

5.2 Эксперимент на автомагистрали
В экспериментах вместо числа АТС использовалась плотность АТС, чтобы учесть раз-

личные длины сегментов. Обозначим плотность АТС на участке автомагистрали, полу-
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Рис. 2 Число зарегистрированных датчиком АТС в зависимости от времени суток. Детектор
перестает фиксировать АТС в 17:25 и начинает в 21:15

ченную с помощью данных дорожных датчиков ρdet = Ndet/l, где l — длина участка
автомагистрали в данных GPS-треков. ρest ∈ Rn

+ и ρdet ∈ Rn
+ — вектора соответсвующих

по времени значений ρest и ρdet, где n — число двухминутных интервалов в выбранном
временно́м промежутке.

Для решения задачи (3) необходимо сначала получить преобразование скорости, решив
задачу (2). Решением задачи (2) явлется следующее выражение:

Vest = 12,4 + 0,639Vtrack. (9)

На рис. 3 показана зависимость плотности АТС от времени суток в случае использова-
ния преобразования (9) (рис. 3, а) и в случае использования скоростей, полученных с GPS-
треков Vtrack (рис. 3, б ). При использовании преобразования (9) ошибка аппркосимации на
обучении σ(a1|ρtrack, Vest, ρdet) = 0,03 и корреляция corr(ρest, ρdet) = 0,787, в то время как
при использовании данных с GPS-треков ошибка аппроксимации σ(a2|ρtrack, Vtrack, ρdet) =
= 0,042 и корреляция corr(ρest, ρdet) = 0,672. Это означает, что использование преобразо-
вания (9) повышает качество аппроксимации.

Далее рассмотрим метод улучшения качества аппроксимации с помощью построения
нескольких моделей для данных с различными значениями плотности АТС, определяемы-
ми по данным датчиков. Для этого возьмем множество данных за февраль L для датчика
и подсегмента под ним и выделим из них множество H ⊂ L — данные, соответствующие
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(а) (б )

Рис. 3 Графики полученных с помощью моделей плотностей в случае с использованием модели
для скорости (а) и без ее использования (б )

плотности АТС более 0,05 АТС/м, которая является переходной между фазами свободного
и синхронизированного потока для МКАД [1].

Задача (3) решается для данных L и H отдельно с получением векторов параметров aL
и aH соответственно. Решением задачи (3) на данных H является следующее выражение:

Nest = 157,78 + 4,54Ntrack − 4,59 log(Ntrack) + 0,153Vest − 85,069
Ntrack

Vtrack
, (10)

а на данных L:

Nest = 117,75 + 2,11Ntrack + 41,55 log(Ntrack) − 0,327Vest − 128,89
Ntrack

Vest
. (11)

Первая модель использовалась при плотности выше 0,1 АТС/м (плотность, соответ-
свующая началу синхронизированной фазы [1]), вторая — при плотности ниже 0,1 АТС/м.
Корреляция на обучении составила 0,787, средняя ошибка — 0,03, а сравнение результа-
та ρdet с ρest показано на рис. 4, а. Для контроля выбраны четыре пары датчик–сегмент
и проведены вычисления с использованием моделей (10) и (11). На контроле корреляция
составила 0,823, 0,80, 0,85, и 0,65, средняя ошибка — 0,0363, 0,0382, 0,0339 и 0,0393 соот-
ветственно. Сравнение результата ρdet с ρest показано на рис. 4, б для одной из тестовых
пар.

Также был проведен эксперимент для проверки возможности использования постро-
енной модели для получения оценки количества проехавших АТС в режиме реального
времени с использование данных GPS-треков. Чтобы обучить модель в этом случае, необ-
ходимо использовать исторические данные за некоторый промежуток времени до дня,
для которого надо получить оценку. В рассматриваемом случае для обучения брались
данные за каждые 7 дней перед рассматриваемым днем, который является контрольным
временным интервалом. На рис. 5 показана заисимость функции ошибки и коэффициен-
та корреляции от дня на усредненных за 10 мин данных для построенных моделях для
каждого дня.

На рис. 6 показаны результаты работы моделей (6)–(8). Сравнение рассматриваемых
моделей приведено в табл. 1. Из табл. 1 следует, что лучшей является модель (5).
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(а)

(б )

Рис. 4 Средняя за 10 мин плотность АТС, рассчитанная по данным датчика и аппроксимиро-
ванным трековым данным на обучении (а) и на контроле (б )
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Рис. 5 Корреляция для усреднённых за 10 мин данных (а) и среднеквадратичная ошибка на
контроле для эксперимента с обучением по 7 дням (б )

В табл. 2 приведено сравнение среднеквадратической ошибки моделей (5)–(7), (8) при
большой плотности ρdet > 0,2. Из табл. 2 следует, что модель (5) значительно лучше при
больших плотностях, чем модели (6) и (8) и лучше модели (7).

5.3 Эксперимент на въездах и съездах
Приведем на примере двух перекрестков результат восстановления числа въехавших

АТС за 02.02.2012. На одном из перекрестков датчиками закрыты все въезды и выезды,
кроме одного въезда, результат работы алгоритма 1 представлен на рис. 7. На рис. 7
показано, что результат работы алгоритма 1 (красная кривая) проходит в области, со-
ответствующей сумме данных с датчика и данных с GPS-треков (зеленые точки), т. е.
ограничение в задаче (4) выполняется с достаточной точностью.

На втором перекресткe датчиками закрыты оба въезда, но один из датчиков фикси-
ровал проехавшие АТС полчаса за день (до 5 АТС), и этот въезд был также включен
в множество Kintrack, данных же трекого типа на данном въезде нет, результат работы
алгоритма 1 представлен на рис. 8. На рис. 8 показано, что результат работы алгоритма 1
(красная кривая) проходит в области, соответствующей сумме данных с датчика и данных
с GPS-треков (зеленые точки), т. е. ограничение в задаче (4) выполняется с достаточной
точностью. Также на рис. 8 показано, что Nestin в большинство двухминутных интервалов
отличается от данных закрытого датчиком въезда (синяя кривая) менее чем на 5 АТС,
а иногда полностью совпадает с ним. Таким образом, данные с закрытого плохим датчи-
ком въезда подтверждаются (малое число зафиксированных АТС), а также становится
понятна причина отсутствия данных трекового типа на данном въезде — слишком слабый
поток АТС. Все значения на рис. 7 и 8 усреднены за 10 мин.

6 Обсуждение результатов
В работе были изложены два алгоритма агрегации данных: на автомагистрали и на

въездах и съездах. Для обоих алгоритмов были поставлены эксперименты на реальных
данных с целью проверки их работоспособности. Таким образом, получены следующие
результаты:
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(а)

(б )

(в)

Рис. 6 Плотность АТС для результатов обучения модели (6) (а), (7) (б ) и (8) (в)
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Таблица 1 Сравнение моделей при всех значениях плотности ρdet

Модель Среднеквадратическая ошибка Корредяция
(5) 0,03 0,787
(6) 0,031 0,781
(7) 0,0326 0,765
(8) 0,0314 0,78

Таблица 2 Сравнение моделей при плотности ρdet > 0,2

Модель Среднеквадратическая ошибка
(5) 0,058
(6) 0,119
(7) 0,065
(8) 0,093

Рис. 7 Пример восстановления числа въехавших АТС. Синяя линия — число проехавших под
датчиком на въезде АТС, зеленые точки — сумма данных с датчика и GPS-треков в моменты
времени из множества Iin. Красная линия — восстановленные значения суммарного числа въе-
хавших АТС Nestin

Рис. 8 Пример восстановления числа въехавших АТС. Синяя линия — число проехавших под
датчиком на въезде АТС, зеленые точки — сумма данных с датчика и GPS-треков в моменты
времени из множества Iin. Красная линия — восстановленные значения суммарного числа въе-
хавших АТС Nestin
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1. Предложен алгоритм восстановления характеристик потока АТС по данным GPS-тре-
ков с использованием данных дорожных датчиков на автомагистрали.

2. Проведено сравнение различных моделей оценки числа АТС на автомагистрали с ис-
пользованием реальных данных и выбрана лучшая.

3. Предложен алгоритм восстановления характеристик потока АТС по данным GPS-тре-
ков и дорожных датчиков с учетом возможных значительных временны́х пробелов
в них на въездах и съездах с автомагистрали.

4. Проверена работоспособность предложенного алгоритма для восстановления суммар-
ного потока на въездах и съездах на реальных данных.

Особенностью поставленной задачи оценки числа АТС на автомагистрали является
большой объем данных с GPS-треков, что позволяет получить приемлемое качество на
обучающей и контрольной выборке как для исходной задачи, так и для задачи в реальном
времени.

В то же время из-за недостаточного количества данных на въездах и съездах нельзя
решить задачу, аналогичную задаче на автомагистрали. Однако, используя уравнение ба-
ланса, можно оценить Nin и Nout на въездах и съездах. В работе предложен алгоритм для
получения этих оценок, который дает интерпретируемые результаты.
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Data aggregation problem, where data are taken from GPS-tracks and traffic detectors, has
been studied. Aggregated data are used to state and solve finite differences equation corre-
sponding to the chosen traffic flow mathematical model. The problem is divided into two ones:
the first one is about highway data and the second one is about entrances and exits data. To
estimate speed and number of cars, a linear model that uses highway data taken from GPS-
tracks and traffic detectors has been proposed. The quality criteria are mean squared error
and correlation coefficient. Note that the built model can be used on highway data, which do
not have data from traffic detectors, but have only data from GPS-tracks. For entrances and
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exits data, a method to recover summary total flow was developed. This method is based on
the preservation of cars in transport network. Computational experiment for both problems is
provided on real data and performance of the proposed approaches is demonstrated. Data from
GPS-tracks were provided by Yandex.Traffic and data from traffic detectors were provided by
Moscow traffic management center. Moscow Ring Road was used as a highway.

Keywords: data recovery; Moscow Ring Road; GPS-tracks; road detectors
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